Archive for Fevereiro, 2012


Too Smart for Our Own Good by Craig Dilworth
Reviewed by George Mobus

A Paradox

Many years ago I believed, as do most people today, that intelligence was the key to solving all of mankind’s problems (read: innovation, assumed by technocornucopians to overcome all problems). I spent no small amount of my life pursuing understanding of what intelligence is, and how the brain produces the abilities to solve complex problems. My childhood was spent watching the unfolding explosion in science and technology that culminated in, for example, the landing of humans on the moon. I grew up knowing there were these wondrous electronic brains called computers. Later at a still impressionable age, once the size and prices of computers came down, I got my chance to play with them. I fell instantly in love with a machine that I could program to rapidly solve problems that would have taken me days to accomplish. And I came across the works of Alan Turing regarding the idea that a computing device might be able to emulate human intelligence, dubbed “Artificial Intelligence” (AI). The “Turing Test” posited that we should accord intelligence to machines if in a blind conversation with a real human, the latter could not detect that s/he was talking to a machine. I set out to see how such a wonder might be accomplished.

Many years later I managed to earn a PhD in computer science by programming a computer to emulate not human intelligence, but the intelligence of a neuron with its adaptive synaptic connections. These, I assembled into a computational model of a snail brain, an admittedly moronic one, and showed how such a brain could control behavior and, more importantly, emulate animal-like (biomimic) learning through Pavlovian-style conditioning. Putting this brain into a computer controlling a small Braitenberg robot, I could show how the brain learned features of its experienced environment and adjusted its behavior to conform to the stimuli of that environment (run from pain-causing stimuli and approach rewarding stimuli). That academic exercise started me digging deeper into how biological neural networks in real brains work. I read every book I could get ahold of and many journal articles on various aspects of neuroscience trying to understand how it worked. The obvious goal of AI was to produce human-like intelligence in a machine. The strong version of this program even contemplated producing a conscious machine (e.g. HAL 9000 in A Space Odyssey). The field of AI has evolved from the earliest days and it has produced some useful computational products. And even though Deep Blue (IBM) beat world chess master Garry Kasporov and Watson (also IBM) beat the all-time Jeopardy champs at that game, the fact is that computers still only simulate some aspects of intelligence, and then only in limited expertise domains.


In any case my initial forays into AI via trying to simulate learning phenomena in neuron-like structures got me hooked on the notion of understanding the real deal. Both psychology and neurobiology had made such important strides toward grasping the nature of human intelligence and consciousness that I essentially ceased worrying about AI and turned my attentions more fully to the pursuit of real human intelligence as an object of study.

As much as has been elucidated, especially over the last few decades, about human intelligence, most of the world still holds that intelligence is our greatest mental achievement. Coupled with its twin mental capacity for creativity, intelligence is seen as the epitome of cognition; a genius is one who has ample portions of both compared with ordinary humans. The human brain is held to provide cleverness in solving complex problems. We often equate intelligence with rational thinking (e.g. deductive logic) and hold accomplishments in mathematics or science as evidence that we are an incredibly smart species. The mere fact of the existence of our technological prowes proves that we are smarter than any mere ape.

But there is a fly in the ointment of this palliative thought. If you try to objectively account for the state of the world today as the result of our being so smart you have to ask a very important question: If we are so smart, why do we humans find ourselves in such a terrible predicament today? Our species is facing a constellation of extraordinary and complex problems for which no one can suggest feasible solutions (see below). The irony is that these problems exist because our cleverness, our being so smart, created them. Our activities, clever as we have thought them to be, are the causes of the problems, which, collectively, threaten the very existence of humanity! This seems a paradox. We were smart enough to create the problems, but we’re not smart enough to fix them. My own conclusion was that maybe smartness wasn’t enough. Maybe something even more important to cognition had been missing that allowed this predicament to develop. That has been the thought that has been motivating my own search for an answer.

Craig Dilworth, Reader in Theoretical Philosophy at Uppsala University in Sweden, has asked this same question from a slightly different perspective, but comes to a similar conclusion regarding the role of intelligence in creating the predicament. In Too Smart for Our Own Good Dilworth masterfully pieces together the story of how humans, being so clever, but still motivated by our animal instincts and drives, have made a real mess of things. Put simply, he concludes that the evolutionary experiment called Homo sapiens is intrinsically unsustainable. He builds the evidence carefully and skillfully, though I have a few concerns regarding some possibly nitpicking details (to be discussed later). His arguments are both complete and consistent with observed reality. And he pulls no punches.

The Predicament and Proximal Causes

A good deal of Dilworth’s book deals with the evolution of the current human species and, in particular, the residual components of human behavior inherited from our animal predecessors. In short, he elucidates the various instinctive drives that underlay all human activities and that demonstrate just how much of a biological creature humans really are. He carefully derives a set of principles from physics, chemistry, and biology that explain the evolutionary trajectory that leads quite naturally to clever apes. And then he claims that a threshold was passed. Along the line of genera Australopithecus and Homo cleverness produced behaviors that no previous animals had been able to perform, at least to the extent these clever apes were able to. In particular early humans (the term covering several species) learned to control fire, to become more efficient hunters and gatherers with tools that they manufactured, to protect themselves from the climate vagaries with manufactured shelters and clothing. That capability to invent and construct put them in a new biological relation with the rest of the biophysical world. It set them going on what Dilworth describes as the “vicious circle.” Humans can extract resources, both non-renewable and renewable, from the environment at a growing rate, both per capita and as the population grows, in absolute terms. We also consume these resources after turning them into usable forms, like clothing. Our consumption, plus the ravages of entropy, means that we are producing waste products at increasing rates in the same dynamical framework as the extraction rates. And we can’t help ourselves. We are driven by biological mandates to consume as individuals and to procreate.

The part about us not being able to help ourselves is really the distal, root cause of all of our misdeeds and subsequent problems. More proximal to our current conundrum is a set of immediate causes and their consequences.

The global-scale threats are legion. Here is just a partial list of some of the more threatening problems, the human role in causing them, and their possible consequences. Any one of these could be incredibly troubling for mankind, but taken together, because they are all interrelated and feeding upon one another, I am convinced, as are a growing number of scientists, they spell certain disaster.

Population Overshoot

In all but a handful of cultures, and those are generally hunter-gatherer societies, and certainly among the so-called civilizations throughout history, the general sentiment of: “Be fruitful and multiply,” seems to have prevailed. Humans, like many animals, have a few, albeit weak, built-in mechanisms for checking the size of populations relative to the carrying capacity of the local environment. Many cultures have practiced various forms of population control and some still do today with varying degrees of success. These practices may be generally seen as part of the culture and have only more recently been seen as coming from some underlying biological drives. Some of these practices are considered barbaric and immoral to civilized sentiments. But, when they work they seem to work well.

Dilworth argues, however, that these internal checks are easily subverted by the more expansive driving biological instincts when the population perceives that 1) the environment can support more bodies, and 2) more bodies are needed to do the work needed to facilitate the extraction of resources. The turning point in human prehistory was probably the invention of agriculture. The latter, ironically, doesn’t actually substantially increase the net energy per capita gain as compared with hunting and gathering, at least where the latter is done in environs that provide renewable abundance in game and food plants. Rather, it tends to decrease the uncertainty of food resource availability, which we humans seem to appreciate. Also ironically, agriculture takes more work per unit time to achieve reliable results, hence an actual reduction in net energy gain per unit of time spent in food production, per capita.

In other words, Dilworth appears to be arguing that the population increases that have been attributed to agriculture came not from an increased availability of food, per se, but from a diminishing of the strength of signals that would have triggered internal natural checks on population expansion enabled by the use of food production technologies. The working classes were allowed to just barely subsist and procreate sufficiently to assure a continuing or even expanding working class to support the higher classes. And, the taller the class hierarchy, the broader the base working class needed. But such expansion also included bringing more land into cultivation in order to support the growing population and still provide a steady flow of goods up to the higher reaches of the hierarchy. Growth of population and “economic” activity — originally farming — thus became a necessity and not just a consequence.

Diminishing Net Energy Per Capita

Of course, the problem is that there is just so much land that can be cultivated. We live on a finite world. Resources, including land, are finite. As growth consumes more and more of the area around the centers of the civilization hierarchies it eventually comes up against either competing hierarchies or marginal land that eventually cannot sustain a production quantity needed. There is an additional interesting phenomenon that occurs as expansion continues, even when the land might be productive. Under the conditions of travel by animal-drawn carts, it turns out that there is a natural distance from the center beyond which the net energy returns begin to diminish geometrically with linear (arithmetic) increase in distance. Horses and oxen need to be fed and can only carry so much weight. The strategy of growth as a way to keep the enterprise going may have seemed like a good idea to the overseers, but in fact there came a time when each unit of growth produced diminishing, and eventually negative benefits. This is related to the idea first advanced by Joseph Tainter regarding the collapse of civilizations due to increased complexity[1].

The phenomenon of a population exceeding its environment’s carrying capacity, defined as the capacity of the environment to replenish levels of required resources at a rate that can sustain an average number of individuals (or more correctly the amount of biomass represented in a given species) and to absorb the waste products of that population without toxic overload, has been documented many times in ecological studies. The world works primarily on a steady but limited flow of energy from the sun. In the end, that flow of energy determines the rate of biological resource replenishment (all other factors being equal). All other animals are restricted to a relatively fixed carrying capacity, at least over normal life cycle times. But humans, in their ability to harness exosomatic (outside their own bodies) sources of energy, and their capacity for invention, found a workaround to this basic limit. They developed ways to appropriate more resources for themselves, leaving the sub-human species less for their needs. Agriculture, after all, requires taking over large tracts of land for the purpose of growing just a few crops of interest to humans, generally in mono culture. Too often this results in loss of habitat for many other species. Once humans discovered and started dipping into the bank account of fossil sunlight known as fossil fuels, the explosion of population was inevitable. For the last several centuries, thanks to the high energy content of hydrocarbon fuels, the net energy per capita used to extract other natural resources and support greater consumption has been increasing. The energy return on energy invested in extracting fossil fuels started out so high that human ingenuity for finding ways to consume more were seemingly released from any natural constraints. The modern technological society emerged as a result.

Unfortunately, fossil fuels are exactly the kind of finite non-renewable resource that constitutes an upper bound on the extent of the population. No, actually it is worse than that. Because we have reached a point in which those fuels are diminishing in toto, and what we are extracting now takes more energy to do it, we have the equivalent of what earlier civilizations faced when they reached the geographical limits for net energy gain. We are approaching the point of zero gains (if we haven’t already passed it) and from here on out every human being on the planet will be facing a decline in net energy available to stay alive. Income inequities make the variances cause increasing starvation at the low ends while the higher classes keep trying to appropriate wealth for themselves.

The human species, like other species under similar conditions, has gone into overshoot. The very typical outcome of such a condition, primarily because the dynamics are nonlinear, is a crash, a wipe out of the majority of the population[2]. Dilworth, in his conclusion, is in agreement with a growing number of researchers that this is the most likely outcome for humanity. We are animals after all.

Derivative Problems

Overpopulation, i.e., overshoot, and diminishing net energy per capita lead to a large number of secondary problems that will also play a role in an unsustainable future for humanity. We are running out of potable water in many regions. This is in part because of overshoot but also in part due to climate changes that, in turn, are aggravated, if not directly caused by, the burning of fossil fuels adding carbon dioxide, a greenhouse gas, to the atmosphere and oceans at unprecedented rates. The globe is warming and this leads to the climate chaos we are starting to witness. It also leads to ocean level rises that will inundate many inhabited regions of the globe in the not-too-distant future.


Read Full Post »

Read Full Post »

Quiero soberanía personal,
mi representación soy sólo yo

Read Full Post »

Soldados americanos no Afeganistão demonstram empiricamente, em 2010, a afinidade entre nazismo e imperialismo americano. Como não é todos os dias que essa equação se revela publicamente em toda a sua candidez, celebremos. Pode ser com os Dead Kennedys? Claro que pode.

We’ve Got A Bigger Problem Now

Last call for alcohol.
Last call for your freedom of speech.
Drink up. Happy hour is now enforced by law.
Don’t forget our house special, it’s called a Trickie Dickie Screwdriver.
It’s got one part Jack Daniels, two parts purple Kool-Aid,
and a jigger of formaldehyde
from the jar with Hitler’s brain in it we got in the back storeroom.
Happy trails to you. Happy trails to you.

I am Emperor Ronald Reagan
Born again with fascist cravings
Still, you made me president

Human rights will soon go ‘way
I am now your Shah today
Now I command all of you
Now you’re going to pray in school
I’ll make sure they’re Christian too

California Uber alles
Uber alles California

Ku Klux Klan will control you
Still you think it’s natural
Nigger knockin’ for the master race
Still you wear the happy face

You closed your eyes, can’t happen here
Alexander Haig is near
Vietnam won’t come back you say
Join the army or you will pay

California Uber alles
Uber alles California

Yeah, that’s it. Just relax.
Have another drink, few more pretzels, little more MSG.
Turn on those Dallas Cowboys on your TV.
Lock your doors. Close your mind.
It’s time for the two-minute warning.

Welcome to 1984
Are you ready for the third world war?!?
You too will meet the secret police
They’ll draft you and they’ll jail your niece

You’ll go quitely to boot camp
They’ll shoot you dead, make you a man
Don’t you worry, it’s for a cause
Feeding global corporations’ claws

Die on our brand new poison gas
El Salvador or Afghanistan
Making money for President Reagan
And all the friends of President Reagan

California Uber alles
Uber alles California

Read Full Post »

Wislawa Szymborska

(2 de Julho de 1923 – 1 de Fevereiro de 2012)

Read Full Post »